
MiniLatex: a Parser-Renderer for a Subset of LaTeX

JAMES CARLSON, University of Utah, USA

MiniLatex is (1) a subset of LaTeX, (2) a parse-render pipeline which transforms documents written in
MiniLatex to HTML. The strategy is to construct an abstract syntax tree (AST) by parsing source text, then
render the AST to HTML, with math-mode elements passed on verbatim for processing by MathJax. The
parse-render pipeline is a library with a small API written using the elm/parser combinator package of Elm,
a statically typed functional language that is designed for building front-end web apps. Both the AST and the
parser are quite small: 12 and 334 lines of code, respectively. A (context-sensitive) grammar for MiniLatex is
sketched. Performance of the system is quite good: fast enough for real-time editing. Three apps have been
using built using the MiniLatex library. The, first MiniLatex Live, is a small app (338 lines of code) with a
simple editor featuring two windows, with source text on the left, rendered text on the right, and a field for
entering math-mode macro definitions.. The rendered text is updated every 250 milliseconds, so that changes
are "immediately" reflected in the rendered version. The second, MiniLatex Reader, is even smaller. It is a
read-only app that can be embedded in web pages to display content written in MiniLatex. The third, knode.io,
is a full content-management app with a searchable document store and facilities for uploading images for
inclusion in MiniLatex documents.

CCS Concepts: • Software and its engineering→ Functional languages; Abstract data types;Markup
languages;

Additional Key Words and Phrases: LaTeX, HTML, Elm, parser combinator, MathJax, parse, render, abstract
syntax tree

ACM Reference Format:
James Carlson. 2666. MiniLatex: a Parser-Renderer for a Subset of LaTeX. ACM Trans. Web 0, 0, Article 0
(January 2666), 10 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Thanks to the pioneering work of Donald Knuth [10] in creating TeX, the subsequent development
of LaTeX by Leslie Lamport [11], and the continued contributions of an active community of
developers, those who rely on LaTeX to publish in print or as PDF have superb document creation
tools. For publishing documents with mathematical content on the web, there are a number of
options. Most widely used is MathJax [6], which provides high-quality rendering of math-mode
TeX-LaTeX for HTML pages. There are also a number of command-line tools, e.g., Pandoc [13],
for converting LaTeX documents to HTML using embedded images for the mathematical text. Of
particular note is Daan Leijen’s Madoko [12], which is perhaps closest in spirit to this project.
Madoko uses Koka, a typed functional language to parse and render a markdown-like language that
handles mathematical formulas written in LaTeX and which can export documents to LaTeX. The
gap that MiniLatex aims to fill is to provide a tool for live-rendering both text-mode and math-mode
LaTeX.
Author’s address: James Carlson, University of Utah, 155 South 1400 East, JWB 233, Salt Lake City, UT, 83105, USA,
jxxcarlson@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2666 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1559-1131/2666/1-ART0 $15.00
https://doi.org/0000001.0000001

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

https://jxxcarlson.github.io/app/miniLatexLive/index.html
https://jxxcarlson.github.io/app/miniLatexReader/index.html
https://knode.io
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 J. Carlson

Fig. 1. MiniLatex Live.

The overall strategy for MiniLatex is to parse LaTeX source text, producing an abstract syntax
tree (AST), then render the AST into HTML, with the math-mode elements passed on verbatim
for rendering by MathJax. This strategy works well enough so that one can do live editing and
rendering, as illustrated in Figure 1 below and as demonstrated by the MiniLatex Live app [3].
Changes in the source text window on the left are rendered in window on the right, essentially
instantaneously. For small documents, the raw speed of the system is sufficient. For large documents,
a diffing strategy is used to parse, render, and update only the parts of the document that have
changed. Thus even large documents may be edited with ease, while still offering live rendering. We
note that there is also a very light-weight "read-only" app, MiniLatex Reader app [4], for displaying
LaTeX source text which can be embedded in web pages.
MiniLatex is still a research project, with many improvements and extensions of scope yet to

come. Nevertheless, it is sufficiently mature to be used for real work, e.g., the production of lecture
notes. The document in Figure 2 is an example of this. It is one section in a set of lectures on
quantum mechanics, available at knode.io/427 [1]. Documents on knode.io are referenced by
numerical ID, a feature which makes them easy to share.
The parse-render pipeline, the demo app, and the content management system front end are

written in Elm [8], the statically typed functional programming language for developing front-end
web apps created by Evan Czaplicki. Elm grew out of Czaplicki’s undergraduate thesis [7]. As of
this writing, it is at verson 0.19. All components of the project are open-source and available on-line
[2], [3].

In the body of this article, we discuss the core technology: parser, renderer, and some optimiza-
tions.

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

https://jxxcarlson.github.io/app/miniLatexLive/index.html
https://jxxcarlson.github.io/app/miniLatexLive/index.html
https://jxxcarlson.github.io/app/miniLatexReader/index.html
https://knode.io/427

MiniLatex: a Parser-Renderer for a Subset of LaTeX 0:3

Fig. 2. knode.io/427.

2 AST
The heart of the MiniLatex system is the type definition of its abstract syntax tree. It is a twelve-line
recursive algebraic data type:

type LatexExpr
= LXString String
| Comment String
| Item LatexExpr
| InlineMath String
| DisplayMath String
| Macro String (List LatexExpr) (List LatexExpr)
| SMacro String (List LatexExpr) (List LatexExpr) LatexExpr
| Environment String (List LatexExpr) LatexExpr
| LatexList (List LatexExpr)
| NewCommand String Int LatexExpr
| LXError (List DeadEnd)

A value of type LXString String is used to represent prose, with the string "Hello there!" parsed
as LXString ("Hello there!"). Comment String represents strings with a leading percent
sign. The Item LatexExpr type is used for items in the enumerable and itemize environments,
while InlineMath String and DisplayMath String are for constructs of the form $... $ and
$$... $$. The Macro ... type is for macros, e.g. \emph{Yes!}. A macro has name, a list of optional
arguments, and then a list of normal arguments. The first are enclosed in brackets, the second in
curly braces. The SMacro type is similar to the Macro type, except that there is an additional, final
argument which is terminated by two or more newlines. The Environment type captures the name
of the environment, a possibly empty list of optional arguments, and the body of the environment,
which is an arbitrary LatexExpr. The LatexList type is used to parse paragraphs, which typically

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

https://knode.io/427

0:4 J. Carlson

yield a sequence of LatexExprs. The NewCommand String Int LatexExpr type is used to hold
user-defined macro definitions. Finally, there is an error type, which is used to capture and display
information on parse errors. The error messages are already reasonably good. For example, if one
omits the final curly brace in a macro, a red "Expecting symbol: }" message is displayed in situ. We
plan to make the error messages much, much, better using the Advanced mode of the elm/parser
library. The feasibility of this has already been demonstrated by the high-quality error messages
emitted by the Elm compiler.

3 GRAMMAR
The grammar for MiniLatex consists of a small set of productions. We give some examples here.
First is the top-level production, which can be read straight from the definition of the AST:

LatexExpr→ LXString | Comment | Item | InlineMath | DisplayMath

Macro | SMacro | NewCommand | Environment | LatexList | LXError
The production for inline math elements is

InLineMath→ $mathSymbols+ $

and the production for macros is equally straightforward:

Macro→ MacroName OptionalArg∗ Arg∗ WS

Here MacroName is an identifier, and WS is whitespace. The production for environments is somewhat
more complex:

Env envName→\begin{envName} LatexExpr \end{envName}

This last production is different from all the others in that the left-hand side contains both a
nonterminal symbol Env and a terminal symbol, envName, e.g., "theorem", "corollary", "verbatim",
etc. For this reason the MiniLatex grammar is context-sensitive but not context-free. Such grammars
cannot be recognized by a pushdown automaton, but can be recognized by a linear bounded Turing
machine: one for which the length of the working tape is bounded by a constant times the length
of the input tape.

4 PARSER
In this section, we discuss the combinators in the elm/parser library [9]. Notable are the pipeline
combinators (|.) and (|=) discussed below.

The parser is built from elementary parsers that recognize fixed strings, e.g., \begin{theorem},
whitespace, words, etc. Words are defined as strings not containing whitespace and not beginning
with a reserved character such as a backslash or a dollar sign. There are also special parsers such as

succeed : a → Parser a

which always succeeds and returns a value of type a. From given parsers one may construct
others using combinators. Thus the top level parser is constructed using the oneOf parser function,
which takes a list of parsers as input, applies each in turn, returning on the first parser to succeed,
otherwise finishing with an error.

LatexExpr : Parser LatexExpr
LatexExpr =

oneOf
[texComment
, displayMathDollar

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

MiniLatex: a Parser-Renderer for a Subset of LaTeX 0:5

, displayMathBrackets
, inlineMath ws
, newcommand
, macro ws
, smacro
, words
, lazy (_ -> environment)
]

Notice the close correspondence between the production for the nonterminal symbol LatexExpr
and the construction of the parser: reading the right-hand side of the first is like reading the
argument to oneOf from top to bottom.
The parser for macros is listed below. Again, the right-hand side of the production read left to

right corresponds to the "body" of the parser read from top to bottom. In this case, instead of using
oneOf for alternation, one uses a parser pipeline for sequencing. The combinator |. means "ignore
what is parsed by the parser on its right-hand side," while the combinator |= means "keep what is
parsed by the parser on its right-hand side." In this parser pipeline, macroName recognizes strings
of the form "backslash followed by an identifier" and returns the identifier. The next two parsers
recognize (possibly empty) lists of arguments , and wsParser parses whitespace.

macro : Parser () -> Parser LatexExpr
macro wsParser =

succeed Macro
|= macroName
|= itemList optionalArg
|= itemList arg
|. wsParser

Here are the formal definitions of the pipeline combinators:
(|.) : Parser keep -> Parser ignore -> Parser keep
(|=) : Parser (a -> b) -> Parser a -> Parser b

With these in hand, one can verify that macro has type Parser Macro.
Finally, consider the parser for environments, for which we give a simplified treatment.
environment : Parser LatexExpr
environment =

envName |> andThen environmentOfType

The envName parser recognizes a string like \begin{theorem} and in this case returns the string
"theorem". The environmentOfType parser takes the string "theorem" as input, parses the body of
the environment, and then parses the phrase \end{theorem}.

environmentOfType : String -> Parser LatexExpr
environmentOfType envType =
let
theEndWord = "\\end{" ++ envType ++ "}"

in
environmentParse theEndWord envType

To glue the envName and environmentOfType parsers together, one uses another sequencing
combinator:

andThen : (a -> Parser b) -> Parser a -> Parser b

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

0:6 J. Carlson

This combinator is, up to a permutation of arguments, the monadic bind operator for the Parser
functor:

(>>=) : Parser a -> (a -> Parser b) -> Parser b

The rest of the parser is constructed in a like fashion.

5 RENDERER
Construction of the renderer is straightforward. One defines a rendering function for each nonter-
minal symbol in the grammar; this set of mutually recursive functions teams up to render the AST.
As an example, the top level rendering function is indicated below. Its form is governed by the
production for LatexExpr, with one clause of the case statement for each term on the right-hand
side of the production.

render : LatexState -> LatexExpr -> Html msg
render latexState LatexExpr =

case LatexExpr of
Macro name optArgs args ->
renderMacro latexState name optArgs args

InlineMath str ->
Html.span [] [oneSpace, inlineMathText str]

Environment name args body ->
renderEnvironment latexState name args body

...

There are a number of observations to be made. First is that the rendering function takes an as-
yet-unexplained argument, LatexState. This is a record that contains information about section
numbers, cross-references, etc., that is needed to render LaTeX source text in the manner to which
we are accustomed. Its computation will be discussed later. Second, observe that parsed text is not
rendered to HTML, but rather to Html msg, which is Elm’s native data type for representing HTML.
Values of this type are efficiently inserted into the web browser’s domain object model (DOM)
by the Elm runtime. Third, for a complete explanation, one must follow each of the rendering
functions down the rabbit hole of function calls until one arrives at a result of type Html msg. Let
us take the renderMacro function, listed below, as an example. If the macro were

\emph{Awesome!}

then name would be emph, the first list of LatexExprs, representing optional arguments would be
empty, and the last list would consist of a single element with payload Awesome!. The renderMacro
function looks up the name emph in a dictionary whose keys are macro names and whose values
are rendering functions. In this case, the lookup succeeds and the resulting function f is applied
to its arguments, computing thereby the needed value of type Html msg. If the dictionary lookup
fails, as it would for

\foo{bar},

the macro is rendered verbatim, but in red, thus providing a reasonable in situ error message.
renderMacro : LatexState -> String -> List LatexExpr

-> List LatexExpr -> Html msg
renderMacro latexState name optArgs args =

case Dict.get name renderMacroDict of
Just f ->

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

MiniLatex: a Parser-Renderer for a Subset of LaTeX 0:7

f latexState optArgs args

Nothing ->
reproduceMacro name latexState optArgs args

A similar strategy is used for rendering environments.

6 COMPUTING THE LATEXSTATE
To compute the LatexState, we use the notion of an Accumulator, which has the following type:

Accumulator state a b : state -> List a -> (state, List b)

An accumulator takes an initial state and and a list of a’s as inputs and produces an updated state
and a list of b’s as output. An accumulator is constructed from a fold and a special kind of reducer,
a function of type

Reducer state a b = a -> (state, List b) -> (state, List b)

The reducer takes as input a value of type a and a pair consisting of a state and a list of b’s. It
then produces an updated state and a new list of b’s. Here is the accumulator which computes
the LatexState:

Accumulator.parse :
LatexState
-> List String
-> (LatexState, List (List LatexExpr))

Accumulator.parse latexState paragraphs =
paragraphs

|> List.foldl parseReducer (latexState, [])

The reducer on which it depends is defined below. It operates by first parsing the inputString,
which is a paragraph of LaTeX source text. The result, parsedInput, is a list of LatexExpr. Next, a
second reducer, LatexStateReducer, is applied to the parsed input and the current LatexState
to compute a new LatexState. Finally, a tuple is returned. Its first element is the new LatexState.
Its second element is obtained by appending the parsed input to the old list of lists of LatexExpr .

parseReducer :
String
-> (LatexState, List (List LatexExpr))
-> (LatexState, List (List LatexExpr))

parseReducer inputString (latexState, listListLatexExpr) =
let

parsedInput =
Parser.parse inputString

newLatexState =
latexStateReducer parsedInput latexState

in
(newLatexState, listListLatexExpr ++ [parsedInput])

It remains to explain the the latexStateReducer, which takes a list of LatexExprs and a LatexState
as input and produces a new LatexState as output. This is accomplished using a fold and yet
another reducer, as listed below.

latexStateReducer : List LatexExpr -> LatexState -> LatexState
latexStateReducer list state =
List.foldr latexStateReducerAux state list

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

0:8 J. Carlson

The real work is done by latexStateReducerAux, which has signature

LatexExpr -> LatexState -> LatexState

It functions very much as does the render function, operating via a case statement with one clause
for each relevant type in the AST to dispatch to a reducer for that type:

latexStateReducerAux : LatexExpr -> LatexState -> LatexState
latexStateReducerAux lexpr state =
case lexpr of
Macro name optionalArgs args ->

macroReducer name optionalArgs args state
SMacro name optionalArgs args LatexExpr ->

smacroReducer name optionalArgs args LatexExpr state
NewCommand name nArgs body ->

setMacroDefinition name body state
Environment name optionalArgs body ->

envReducer name optionalArgs body state
LatexList list -> List.foldr latexStateReducerAux state list
_ -> state

7 CHUNKING BEFORE PARSING
MiniLatex does not parse the entire source text in one go. Rather, it first chunks the source into a
list of logical paragraphs. These are either ordinary paragraphs or an outer begin-end pair. Each
chunk is parsed separately. This decision has two beneficial consequences. The first is that errors
are localized — they cannot extend beyond one logical paragraph. It also means that the parser is
of type LL(N) rather than LL(∞), where N is the maximum number of characters in a paragraph.

The second advantage is that one can employ a differential rendering strategy. Let u be the list of
logical paragraphs corresponding to some source text, and let v be the list for an edited version of
the source text. Write these lists as u = a x b and v = a y b, where a is the greatest common prefix
and b is the greatest common suffix. The diffing algorithm computes (a,x ,y,b) from u and v , and
it does this quite efficiently using a finite-state machine that operates line by line. If u ′, the parsed
and rendered version of u, is stored, then to compute v ′ it suffices to render y, which is known. The
lists a′ and b ′ are easily computed from u ′. Ifm is the length of the list a, which is known, then a′

is the list consisting of the firstm elements of u ′. If n is the length of b, then b ′ is the list consisting
of the last n elements of u ′. All of these operations except for parsing y are quite efficient. But y is
usually small in comparison with v , so there is a ordinarily a large speed-up. This speed-up is very
much noticeable in practice. The downside is that "differential parse-rendering" can leave parts of
the document, e.g. section numbers out-of-sync. To bring them back into sync, one must do a full
render.

The diffing strategy just described is far from the theoretical optimum for random changes to a
document. If a letter is changed in the first and last paragraphs, or if there are scattered changes
throughout the document, then the entire document would be re-parsed and re-rendered. However,
a typical human editor tends to make highly localized edits most of the time, so that the diffing
strategy is close to optimal in practice. This is especially so since the document is parsed and
rendered every 250 milliseconds if there is a change to it. (Documents are saved to the back end
every eight seonds.)

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

MiniLatex: a Parser-Renderer for a Subset of LaTeX 0:9

8 SCOPE AND SPECIFICATION
The scope of MiniLatex is determined, among other things, by the set of macros and environments
which are implemented. At present there are 24 macros that have the same meaning in both LaTeX
and MiniLatex; in addition, there are 19 MiniLatex macros that are translated into LaTeX on export,
and there are 2 macros which do not have counterparts in LaTeX. Finally, there are 12 environments
common to both LaTeX and MiniLatex. These macros and environments are reported in [5]; they
constitute part of a draft specification of MiniLatex.
Because of the architecture of the renderer — the use of dictionary-driven accumulators — it

is an easy matter to add new macros or new environments: just add a name to a dictionary and
define the function that it points to. More sophisticated changes in the current architecture require
additions or changes to the record defining the LatexState and changes to the dictionary and
functions which is references.
A recent addition to the MiniLatex system is a the ability to expand text-mode macros defined

in the usual way by \newcommand. For example, one could say \newcommand{\hello}[1]{Hello
\strong{#1}!}, then say \hello{John} to produce the rendered text: Hello John!. The macro
expansion feature is implemented via a function

expandMacro : LatexExpr -> LatexExpr -> LatexExpr

which manipulates the AST. It weighs in at 63 lines of code andt greatly extends the scope and
flexibility of MiniLatex. We plan to investigate the related topic of defining new environments at
runtime.

9 DIFFERENCES AND LIMITATIONS
The statement that MiniLatex is a subset of LaTeX needs qualification. Let L denote LaTeX, and let
M denote MiniLatex. Then the relevant sets on which to comment are (1) L ∩M, (2) L −M, and
(3)M −L. The first set is the "compatibility" set and is largely described by the set of macros and
environments currently implemented in MiniLatex. The second set represents work to be done,
e.g., macros and environments to be implemented. The third set represents features of MiniLatex
not present in LaTeX. This a small set, e.g., a three-argument macro for placing images. Most of
these differences are resolved when a MiniLatex document is exported. Macros are transformed if
need be, and if need be a macro definition is supplied in the document preamble so that it can be
rendered using pdflatex. There is a much smaller set of specialized macros with no counterpart
in LaTeX, e.g.,macros for placing scrollable PDF documents.

9.1 Math-mode macro definitions
MiniLatex supports math-mode macros because MathJax supports them. One can, for example,
enclose these definitions in double dollar signs to make them available in a document. In knode.io
there are facilities for making this operation more convenient: one may define a "macro document"
where macros are defined, then ask the the given document use it when the text is rendered.

9.2 Inputs, style sheets, etc.
Except for composite documents which are made of many subdocuments, there is no notion of
a document with input files. There is, however, the notion of a master document for knode.io:
basically a list of references to other documents. Master documents are used, for example, in
creating sets lectures notes. See knode.io/427 and knode.io/424.
There are no style sheets in MiniLatex, though these may be added to exported MiniLatex

documents. That is how this document was created: it was first written on knode.io, then exported
and inserted with a few minor changes in the template for Communications of the ACM. There is

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

https://knode.io/427
https://knode.io/427

0:10 J. Carlson

also no \begin{document} — \end{document} pair. These are added on export so that the file can
be run through pdlatex without further changes. There are no regions, as in

{\bf This is bold text}

This decision was made in part to keep the parser as small as possible. For the same reason,
there is also no use of dashes to produce m- and n-dashes. Use \mdash and \ndash or unicode
characters instead. MiniLatex prefers space above and below environments so that the chunking is
as fine-grained as possible.

10 TESTING
MiniLatex has a test suite for core components, e.g., the parser, the differ, and the accumulator. The
test suite needs to be expanded. Another test runs as follows. There is a render-to-latex function
which is used for export. Let f be the function "parse and render to latex." If the system is functioning
correctly, then for all source text x , f (f (x)) = f (x) — provided that x ∈ M ∩ L.

11 FUTUREWORK
As noted in the introduction,MiniLatex is still a research project, albeit one that has been successfully
used for writing some quite substantial lecture notes, e.g., knode.io/424. A major goal of the project
is to make MiniLatex a tool that its natural communities can rely on to produce web content.
For that reason we intend to expand its scope (macros, environments, possibly other features) on
the basis of our own perceived needs and also on the basis of feedback from the community. A
specification is also being drawn up.

ACKNOWLEDGEMENTS
I would like to express my thanks to the many people on the Elm Slack who have helped me with
this project. I am especially grateful to Evan Czapliciki, Luke Westby, and Ilias van Peer for their
help and advice. I would also like to thank Davide Cervone for crucial help with MathJax.

REFERENCES
[1] James Carlson. 2018. knode.io (App). https://knode.io
[2] James Carlson. 2018. MiniLatex (Elm package). https://package.elm-lang.org/packages/jxxcarlson/meenylatex/latest/
[3] James Carlson. 2018. MiniLatex Live (App). https://jxxcarlson.github.io/app/miniLatexLive/index.html
[4] James Carlson. 2018. MiniLatex Reader (App). https://knode.io/reader3/
[5] James Carlson. 2018. MiniLatex Technical Report. https://minilatex.gitbook.io/
[6] David Cervone, Volker Sorge, Christian Perfect, and Peter Krautzberger. 2009. MathJax: A Javascript Library for

Rendering Mathematics. https://mathjax.org
[7] Evan Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. https://www.seas.harvard.edu/sites/default/files/

files/archived/Czaplicki.pdf
[8] Evan Czaplicki. 2018. elm-lang.org. https://elm-lang.org/
[9] Evan Czaplicki. 2018. elm/parser. https://package.elm-lang.org/packages/elm/parser/latest/
[10] Donald E. Knuth. 1970. The TeXbook. Addison-Wesley, New York, NY.
[11] Leslie Lamport. 1994. LaTeX: A Document Preparation System. Addison-Wesley, New York, NY.
[12] Daan Leijen. 2016. Rendering Mathematics for the Web using Madoko. In Proceedings of the ACM Symposium on

Document Engineering. ACM Press, New York, NY.
[13] John MacFarlane. 2017. Pandoc a universal document converter. https://pandoc.org/

Received November 2018

ACM Trans. Web, Vol. 0, No. 0, Article 0. Publication date: January 2666.

https://knode.io/424
https://knode.io
https://package.elm-lang.org/packages/jxxcarlson/meenylatex/latest/
https://jxxcarlson.github.io/app/miniLatexLive/index.html
https://knode.io/reader3/
https://minilatex.gitbook.io/
https://mathjax.org
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://elm-lang.org/
https://package.elm-lang.org/packages/elm/parser/latest/
https://pandoc.org/

	Abstract
	1 Introduction
	2 AST
	3 Grammar
	4 Parser
	5 Renderer
	6 Computing the LatexState
	7 Chunking before parsing
	8 Scope and Specification
	9 Differences and Limitations
	9.1 Math-mode macro definitions
	9.2 Inputs, style sheets, etc.

	10 Testing
	11 Future work
	References

